Leveraging Variation and Uncertainty in Environmental Footprinting

Randolph Kirchain

Jeremy Gregory, Jeffrey Dahmus, Elsa Olivetti

Materials Systems Laboratory

Massachusetts Institute of Technology

MIT Materials Systems Laboratory

Focus: strategic properties of materials and process technologies

- Organizational Structure
 - MIT School of Engineering
 - MIT Department of Materials Science & Engineering
 - Engineering Systems Division
 - Part of several larger MIT Research Centers
 - Materials Processing Center
 - Center For Technology, Policy & Industrial Development
 - MIT Energy Initiative
- Joint work with numerous corporate, government, academic, and industrial consortia
- 2 professors, 3 researchers, 2 postdocs, 15 graduate students

MSL Scope of Work: Topics & Domains

The Role of Uncertainty: Background

- Overarching research question:
 - How robust is the LCA method for materials selection?
 - Early in the design cycle
 - What characteristics of a case / problem weaken the robustness of the method?
- Focal issues
 - Scope

- Closed-loop Allocation

- Inventory
 - Uncertainty is a real, significant, and unavoidable aspect of the life-cycle inventory
- Specific question: What role does inventory uncertainty play in effective life-cycle assessment (footprinting)?

The Opportunity to Leverage Uncertainty Information

- Effectively characterizing inventory uncertainty should
 - Improve efficiency of analysis
 - Identify targets for improvement

Efficiency

- Often, most of the impact for a product is tied to a few decisions
- Without any understanding of uncertainty, it is challenging to know how few

Targets

 Depending on source of uncertainty, it may be possible to know whether supply-chain or design change is effective

Issue 1: Significant Variation Exists in the Environmental Performance of Real-world Processes

Significant Variation Exists in the Real-world: Examples from a Global Survey of Al Production

Significant Variation Exists in the Real-world: Examples from a Global Survey of Al Production

Issue 2: Conventional Life-cycle Assessment Requires Significant Resources

Resource Requirement of LCA: An Example from a 3 Component Marker

Issue 3: Inventory Often Dominated by a Few Activities

Effects Often Isolated for a Given Product: Recent Study of a Consumer Product

Even within Raw Materials, Impact is Focused

Full LCA Required Specifications and Results Production Extraction Transport Use End-of-Specification Life Required 12 10 **Environmental** 8 Impact 6 2 0

Simplified Quantitative LCA with Uncertainty Required Specifications and Results

Implementing a Simplified Quantitative Analysis

- Effectively characterizing inventory uncertainty should
 - Improve efficiency of analysis
 - Identify targets for improvement
 - Differentiate targets
- Data collection
 - Begin to estimate supply-chain inventory uncertainty through selected data collection
- Case study
 - Examine analytical value
 - Resource savings
 - Fidelity with complete analysis

Terminology

Estimation Error = irreducible spread on measured flows from a single activity

Variation = reducible spread on measured flows from multiple activities

Uncertainty = convolved estimation error and variation

